ADVANCING THE AI-BASED REALIZATION OF ACAS X TOWARDS REAL-WORLD APPLICATION

The 36th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)

Motivation

- Al already vital in many domains
- Al in aviation to reach \$10 billion by 2030, CAGR >35 %
- Safety in other domains often tread lightly
- Al-based systems require unmet levels of safety

- Al will severely impact future aviation
- Safety is paramount

EASA Roadmap for Safe AI in Aviation

Learning Assurance

"All [...] actions [...] that error[s] [...] have been identified and corrected such that the Al/ML constituent [...] provides sufficient generalisation and robustness capabilities."

- EASA Al Roadmap and Concept Papers
- Way towards safe Artificial Intelligence in aviation
- Emphasize a clear and transparent approach

Operational Design Domain

- Developed by SAE International
- Designed for autonomous systems
- Clearly defines environmental conditions
- Enforces boundaries of operation
- Required by EASA for all AI applications

OPERATIONAL DESIGN DOMAIN

- Scenery
 - Geography = Above land
- Dynamic Elements
 - Intruder
 - ٠. ا
- **■**Environmental Conditions
 - ■Wind = 0 kn to 40 kn

"Operating conditions under which a given driving automation system [...] is specifically designed to function, including [...] **environmental**, **geographical**, and time-of-day restrictions, and [...] **traffic** or **roadway** characteristics."

Collision Avoidance

Intruder

- Collision Avoidance is crucial for safety
- TCAS II is the current standard

^[8] Kvle D. Julian and Mvkel J. Kochenderfer. "Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems". In: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC), IEEE, Sept. 2019.

HCAS: A Horizontal Collision Avoidance System

Variable	Unit	Description
ρ	ft	Distance to intruder
θ	0	Bearing angle to intruder
ψ	0	Relative heading angle
v own	$\rm fts^{-1}$	Ownship's true airspeed
v_{int}	$ft s^{-1}$	Intruder's true airspeed
au	S	Time to closest point of approach
<i>S</i> adv	_	Previous advisory

Advisory	Description
COC	clear of conflict
WL	weak left
WR	weak right
SL	strong left
SR	strong right

SDES2500 SCL2500

VCAS: A Vertical Collision Avoidance System

Variable	Unit	Description
h	ft	Altitude difference
$\dot{h}_{ m own}$	$ft s^{-1}$	Ownship's vertical rate
\dot{h}_{int}	$\mathrm{ft}\mathrm{s}^{-1}$	Intruder's vertical rate
au	s	Time to closest point of approach
s_{adv}	-	Previous advisory
Advisory Description		scription
COC	cle	ar of conflict
DNC	do	not climb
DND do not descend		not descend
DES1500		
CL1500	clin	nb \geq 1500 ft/min
SDES150		engthen descend to \geq 1500 ft/min
SCL1500	stre	enathen climb to $>$ 1500 ft/min

strengthen descend to \geq 2500 ft/min

strengthen climb to ≥ 2500 ft/min

pyCASX - An Automated Testing Tool

- Open-source tool
- Designed to test Collision Avoidance Systems
- Focused on FlightGear
- Provides a suite of CLI tools
- Fully customizable via Hydra
- Easy to use REST interface

pyCASX - Process Flowchart

- 1. Convert the ODD to a yaml file
- 2. Create scenarios: pycasx scenarios
- 3. Copy into the correct folder: pycasx copy
- 4. Run scenarios in a loop: pycasx run
- 5. Evaluate the results

Scenarios

Evolution of a VCAS scenario

(a) Scenario starts at t = 0 s.

(b) CL1500 issued at t = 30 s.

(c) CPA at t = 57 s with h = -732 m.

(d) Scenario end at t = 90 s.

Evolution of an HCAS scenario

(a) Scenario starts at t = 0 s.

(b) WR issued at t = 26 s.

(c) CPA at t = 60 s with $\rho = 7587 \text{ m}$.

(d) Scenario ends at $t = 90 \,\mathrm{s}$.

Summary and Outlook

- Testing ODDs vital for safe AI
- pyCASX automatically tests defined ODDs
- Help with AI Engineering for Collision Avoidance
- Define more types of scenarios
- Test with CAS enabled on both aircraft
- Test with 6/16 chabled on both all chart
- pypi v1.0.0 python 3.8 | 3.9 | 3.10 | 3.11 pre-commit.ci passed
 - Python tests (pytest) passing docs passing REUSE compliant
- Al Engineering requires specific tools
- Automation is crucial for ODD testing

References

- Precedence Research. Artificial Intelligence in Aviation Market Size, Share, and Trends 2024 to 2034. Research rep. 1748.
 Precedence Research, May 2022
- [2] European Union Aviation Safety Agency (EASA). Artificial Intelligence Roadmap 2.0. Tech. rep. Version 2.0. Postfach 10 12 53, 50452 Cologne, Germany: European Union Aviation Safety Agency (EASA), May 2023
- [3] European Union Aviation Safety Agency (EASA). EASA Concept Paper: Guidance for Level 1 & 2 Machine Learning Applications. Tech. rep. Version Issue 02. Postfach 10 12 53, 50452 Cologne, Germany: European Union Aviation Safety Agency (EASA), Apr. 19, 2024
- [4] RTCA, Inc. DO-185B. Tech. rep. Washington, DC, USA: GlobalSpec, June 19, 2008
- [5] RTCA, Inc. DO-385. Tech. rep. Washington, DC, USA: GlobalSpec, Oct. 2, 2018
- [6] RTCA, Inc. DO-386 Volume 1 & 2. Tech. rep. Washington, DC, USA: GlobalSpec, Dec. 17, 2020
- [7] Kyle D. Julian et al. "Policy compression for aircraft collision avoidance systems". In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC). IEEE, Sept. 2016
- [8] Kyle D. Julian and Mykel J. Kochenderfer. "Guaranteeing Safety for Neural Network-Based Aircraft Collision Avoidance Systems". In: 2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). IEEE, Sept. 2019
- [9] FlightGear developers & contributors. FlightGear. Version 2020.3.19. Oct. 18, 2023
- [10] Omry Yadan. Hydra A framework for elegantly configuring complex applications. GitHub. 2019

Imprint

Topic: Advancing the Al-Based Realization of ACAS X Towards Real-

World Application

Date: October 28, 2024 to October 30, 2024

Author: Johann Christensen

Institute: Institute for AI Safety and Security

Credits: All images "DLR (CC BY-NC-ND 3.0)" unless otherwise stated